
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000

FINITE ELEMENT MESH SIZING FOR SURFACES USING SKELETON

William Roshan Quadros+, Steven James Owen*, Mike Brewer*, Kenji Shimada+
+Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

*Sandia National Laboratories1, Albuquerque, NM, 871850, USA.

ABSTRACT

The finite element (FE) mesh sizing has great influence on computational time, memory usage, and accuracy of FE analysis.
Based on a systematic in-depth study of the geometric complexity of a set of connected surfaces, a computational procedure for
the generation of FE mesh sizing function is proposed. The computational procedure has three main steps: (1) Generation of
source points that determine the size and gradient at certain points on the surface; (2) generation of an octree lattice for storing
the sizing function; and (3) interpolation of mesh size on the lattice. The source points are generated automatically using a set of
tools that are sufficient to completely measure the geometric complexity of surfaces. A disconnected skeleton of the input
surface is generated, and it is then used as one of the tools to measure the proximity between curves and vertices that form the
boundary of a surface. Octree lattice is used as it reduces the time for calculating the mesh size at a point during meshing. The
size at the octree lattice-nodes is calculated by interpolating the size of the source points. The computational procedure is
independent of the meshing algorithm; it can handle non-geometric factors, and it is capable of generating variety of meshes by
providing the user with enough control of mesh size and gradation. The proposed approach has been tested on many industrial
models, and graded surface meshes have been generated successively.

Keywords: Surface meshing, finite element mesh sizing function, skeleton, and medial axis transform

1. INTRODUCTION

This paper examines element sizing of surface meshes used
in the finite element method (FEM). The FEM is a
versatile and powerful numerical procedure which analyzes
complex structures and continua for various scientific and
engineering fields. Surface meshes are used in industry in
such diverse applications as animation, cinematography,
medical simulations, manufacturing, and FE analysis. Each
area of application has a specialized requirement for
element quality, sizing, approximation accuracy, and
computational time of the surface mesh. For example, in
the computer graphics community, the emphasis is on
visual quality, optimizing the number of mesh elements or
polygons, and speed. Whereas, in engineering, the
requirement is for element size, quality, number, and
orientation. This paper will focus on automatically
generating sizing information for FE surface meshing.

Even though much research has been done developing
automatic, unstructured FE surface meshing algorithms [1],
these algorithms do not recognize the complexity of
geometry upfront; therefore it is difficult to generate the
optimal mesh in one step. For this reason it is worthwhile
to split the surface meshing process into two steps: (1)
Analyze the input surface and generate functions that
provide size, shape and orientation of the desired elements.
(2) Generate FE mesh using the size, shape and orientation
information. Here the objective is to completely analyze
the input surface and to provide the mesh sizing function to
the surface meshing algorithms.

In general, a FE mesh sizing function depends on various
factors such as, geometric complexity of the domain,
physics of the problem, boundary conditions etc. As

geometry of the domain is most influential factor and is
always available upfront, here we generate mesh sizing
function for generating an initial geometry-adaptive mesh.

As illustrated in Figure 1, a geometry-adaptive mesh
depends on the geometric complexity of the surface and
contains significantly fewer elements, while maintaining
the mesh quality with fine elements at small features and a
high curvature region, and by a smooth transition in mesh
size; in this way, geometry-adaptive mesh reduces
computation time and memory usage during preliminary
analysis without sacrificing accuracy. The accuracy of
analysis can be improved later by refining and coarsening
the initial geometry-adaptive mesh, based on error
estimation from the preliminary analysis.

Thus generation of an appropriate geometry-adaptive mesh
sizing function is crucial in obtaining accurate preliminary
FE analysis results; so there is a great demand for
automatic generation of a geometry-adaptive mesh sizing
function.

Figure 1 Uniform mesh and geometry-adaptive

mesh

Geometry-adaptive mesh
with 9,001 tri elements

Uniform mesh with 17,900
tri elements

2. LITERATURE REVIEW

This section discusses the previous surface meshing
approaches with more emphasis on sizing. Many of the
previous meshing algorithms discuss some sort of
element/nodal spacing control; however, sizing is
integrated with the meshing process.

In early meshing schemes, users were required to specify
the size manually; even today, while meshing the complex
parts, user input is required in many commercial packages.
In early advancing front methods (AFM) [2], a background
mesh consisting of simplicial elements (triangles), was
manually constructed using sample points (nodes). The
size of the background mesh at each node is specified by
the user, and during meshing, the size at a point in the 2D
domain is calculated by interpolating the sizes stored at the
nodes of the triangle containing that point. In general,
specifying the size manually is a tedious and time
consuming process.

The generation of background mesh was later automated by
generating a Constrained Delaunay Triangulation (CDT)
[3, 4] of a set of vertices. Delaunay mesh [5] on curved
surfaces was later developed by satisfying empty
circumellipse, rather than an empty circumcircle in
parametric space. Cunha et al. [6] automated the placement
of the background mesh nodes on the curves, followed by
placement on surfaces, using curvature and proximity.
Proximity is determined based on the distance between the
facets and the nodes. Measuring proximity in this manner
is a combinatorial problem and is generally time
consuming. Also, because the empty Delaunay meshes are
coarse, abrupt variations can occur in the target mesh size.

Owen and Saigal [7] used a natural-neighbor interpolation
method to alleviate the abrupt variations in target mesh
size. Owen and Saigal [7] generated a CDT in 2D
parametric space by considering a sparse set of nodes on
the boundary of the surface. The size at the boundary
nodes is calculated based on the edge lengths of the
boundary segments. The final sizing function depends on
node placement in the initial background mesh, and on the
interpolation method. The natural-neighbor interpolation
method using CDT, has shown good results in surface
meshing; however, initial distribution of boundary vertices
is crucial in obtaining CDT and proper initial size at the
nodes.

One disadvantage of the background mesh is that, while
calculating the mesh size at a point, finding the triangle
containing that point is expensive, and a parallel-
developed, alternative to store mesh size is the background
grid. Pirzadeh [8] used the uniform Cartesian grid to store
the mesh size; however, a uniform grid is not suitable for
capturing the large gradient in mesh size and it consumes
huge amounts of memory. The other class of background
grids which overcome uniformed grid limitations are non-
uniform hierarchical grids called Quadtree.

The Quadtree, a spatial decomposition method, was
pioneered for meshing in 1980s by Yerry and Shepard [9]

and surveyed by Tracker[10] and Shepard[11]. The size
of the quadtree cells (squares), depends on the subdivision
of the bounding box, which is governed by the user-
supplied spacing function or a balance condition for the
tree. The drawback of this approach is that Quadtree is
orientation sensitive and it is difficult to control the sizing
gradient.

Another class of meshing approach uses medial axis
transform (MAT)[12], for geometry-adaptive meshing.
Srinivasan et al. [13] used the radius function of MAT to
control nodal spacing on the boundary and interior of a 2D
domain while generating adaptive triangular mesh. Gursoy
and Patrikalakis [14, 15], used MAT to detect constrictions,
extract holes, and to generate adaptive triangular meshes.
The author has used medial axis to generate adaptive
quadrilateral meshes on surfaces by varying the width of
the tracks using radius function [16]. Even though MAT
has been used in mesh generation, no specific research has
been done in generating the mesh sizing function.

Although the approaches discussed above are effective and
useful in many aspects, no serious attempt has been made
to systematically understand the geometric complexity of
the surface with reference to FE mesh sizing, and no
general framework specifically for sizing function
generation is proposed; these two issues are addressed in
this paper. Sections 4 and 5 discuss understanding and
measuring geometric complexity of surfaces in reference to
FE meshing. Skeleton is proposed as one of the tools to
accurately measure proximity and feature size. The
Skeleton avoids finding distances between combinations of
geometric entities. In Section 6, an overview of the
computational procedure for sizing is given. The details of
the general framework are given in Sections 7, 8, and 9.
The proposed framework is independent of the meshing
algorithm, general enough to handle non-geometric factors,
and capable of generating variety of meshes. It is also
computationally efficient, robust, and easy to implement.

3. PROBLEM STATEMENT

The goal of our work is to develop a computational
procedure for mesh sizing function by completely
measuring the geometric complexity of surfaces. The mesh
sizing function must meet certain requirements: (1) Mesh
size should be bounded with in a minimum size (dmin) and a
maximum size (dmax). (2) The gradients should be bounded
by a predefined limit (α). A more formal statement is
given below.

Given a set of connected surfaces F in R3and the bounds of
mesh size dmin and dmax, Generate the mesh sizing function
s, based on the geometric complexity of F, such that,

1. Mesh size d = s (p) where point p(x,y,z) lies on F

and dmin ≤ d ≤ dmax

2. s is α-Lipschitz, i.e., for any two points p1 , p2

lying on F

 | s(p1) – s(p2) | ≤ α || p1 - p2 || where α is a
constant

4. GEOMETRIC COMPLEXITY OF
SURFACES

As it is difficult to analyze the geometric complexity of the
set of connected surfaces, F, at once, first the set F
embedded in 3ℜ is decomposed into disjoint subsets; then
the geometric complexity of each subset is analyzed
considering the FE mesh generation. The surfaces are
decomposed into disjoint subsets for the purpose of
theoretical analysis only.

4.1. Disjoint Subsets of a Set of Connected
Surfaces

Let set F contains L connected surfaces Fi, where i = 1, 2,
L, which meet only at the boundary curves (without
intersections), and each surface Fi, has a interior and a
boundary as given in Equation 1.

∪ L

1

=

=
=

s

i iFF where)()(iii FbndFinF += (1)

 Equation 1 can be rewritten as

∪ L

1

L

1
)()(=

=

=

=
+=∑ i

i i
i

i i FbndFinF
 (2)

Let the set F contain M curves Cj, where j = 1, 2… M.

∪∪ M

1

L

1
)(=

=

=

=
=

j

j j
i

i i CFbnd

where)()(jjj CbndCinC +=
(3)

Substituting Equation (3) in Equation (2)

∪ M

1

M

1

L

1
)()()(=

=

=

=

=

=
++= ∑∑ j

j j
j

j i
i

i i CbndCinFinF (4)

The union of boundary of M curves is same as set of N
vertices of F, and so Equation 4 can be written as Equation
5.

∑∑∑ =

=

=

=

=

=
++=

N

1

M

1

L

1
)()(k

k k
j

j i
i

i i VCinFinF (5)

Equation (5) shows that the disjoint subsets of a set of
connected surfaces are: The interior of each surface, the
interior of each curve and vertices. In Figure 2, the root of
the tree is the set of input surfaces (a single surface is
shown for clarity), and the leaf nodes are the disjoint
subsets. As the subsets are disjoint, the geometric
complexity of each subset is independent of the other.

Figure 2 Disjoint subsets of a surface

4.2. Geometric Complexity of each Disjoint
Subset

 The disjoint subsets of F, which are embedded in 3ℜ , are
defined first in order to understand their geometric
complexity. A vertex V is a point in 3ℜ , which is defined
by its Cartesian coordinates Vx, Vy, and Vz. The in(C) is a
curve in 3ℜ is a continuous mapping 3: ℜ→Iα where I is
interval (a, b) on real line ℜ . To simplify the analysis, we
assume in(C) is curvature continuous. A general
parametric surface in(F) can be defined by a vector-valued
mapping x from 2D parametric space D to a set of 3D
coordinates.
 FD →:x where D is a open subset of 2ℜ .
 T)),(),,(),,((),(vuzvuyvuxvu =x
The mapping x is called parameterization of the surface in
(F). If for every point q = x(u0, v0), there exists a
neighborhood Mq, q ∈Mq ⊂ 3ℜ and Nq, (u0, v0)T ∈ Nq ⊂

2ℜ such that x: Nq → Mq ∩ F is a differentiable
homeomorphism on Nq, and the differential dxp:

2ℜ → 3ℜ is one-to-one for every point p ∈ Nq, the surface
in(F) itself is called “a regular parametric surface”. To
simplify the analysis, it is assumed that the surface F is
curvature continuous, i.e., F can be parameterized locally
by a mapping T)),(),,(),,((),(vuzvuyvuxvu =x , which is a
twice continuously-differentiable function. At the end of
this section, a note on relaxing this assumption is given.

The geometric complexity of each disjoint subset defined
above is analyzed in reference to FE meshing in the
following paragraphs. A vertex V is a zero dimensional
entity whose interior is same as the boundary; it is not
necessary to understand its geometric complexity. To
represent a vertex V in the FE mesh, an FE node must be
placed.

The geometric complexity of the interior of a curve, in(C)
(the only subset that is an 1D geometric entity), is
discussed here. Figure 3(a) shows the invalid linear FE that
is longer than the curve. This shows that the proximity
between the end vertices of a curve should be taken into
account. As in(C), a 1D subset, is embedded in 3D space,
in(C) shown in Figure 3(a) can be bent to lie on a plane, as
shown in Figure 3(b). From Figure 3(b) it is clear that
curviness should be taken into account while generating the
linear elements, in order to better represent in(C); that is,
the smaller elements should be placed at the region of high
curviness. Again, as in(C) is 1D subset, it has one more
freedom to come out of the plane. Figure 3(c) shows the
helix with a non-zero twist, but with the same length and
curviness as that of the curve lying on the plane (twist=0).
An element paved on these two curves shown in Figure
3(c) will have different deviation from the original curve.

The geometric complexity of the interior of a surface,
in(F), which is the only subset that is a 2D geometric
entity, is discussed here. Figure 4(a) shows the invalid
triangular elements that lie outside the in(F). This shows
that the proximity between the boundary curves and
vertices should be taken into account. As in(F) is

M,..2,1),(=jCin j

L,..2,1),(=iFin i

Surfaces, F

∪ L

1
)(=

=

i

i iFbnd

N,...2,1, =kVk

embedded in 3D space, it is able to bend to form a curved
geometric entity. Figure 4(b) shows the invalid triangular
elements which do not represent the original curved
geometry well. Thus, at the interior of a surface, the
curviness should also be taken into account while
generating the FE meshes.

At the beginning it was assumed that curves and surfaces
were curvature continuous, but there could exist cusps
(such as the tip of cone) and sharp bends in the curves and
surfaces where tangent and curvature vector are not well
defined. These points, curves, and regions are considered
to be hard points, curves, and regions. The complexity of
hard points, curves, and regions can be analyzed, as
discussed in analyzing vertices, interior of curves, and
interior of surfaces. And, during meshing, FE nodes should
be placed appropriately to better represent these hard
entities. These hard entities are not addressed in the rest of
the paper.

Also, the relative position of surfaces in F, for example, the
angle between adjacent surfaces etc., are not considered
here, as they do not affect surface meshing. In some
applications, due to the physics involved, the relative
position could play a prominent role, but is not considered
here as it is outside the scope of this paper.

Figure 3 Geometric complexity of curve interior

Figure 4 Geometric complexity of surface interior

5. TOOLS FOR MEASURING GEOMETRIC
COMPLEXITY OF EACH SUBSET

In the following paragraphs, the tools needed to measure
the geometric complexity of each subset of F are discussed
in detail. A disconnected skeleton is proposed as the tool to
measure the proximity in in(F), and principal normal
curvatures are used as the tool to measure the curviness of
in(F). In in(C), arc length, principal normal curvatures, and
torsion are used as the tools to measure proximity,
curviness, and twist.

5.1. Measuring Proximity in in(F)
Here, a computationally-efficient, sufficiently accurate
disconnected skeleton that provides local thickness
information as the tool to measure the proximity in in(F) is
proposed. Measuring proximity between the boundary
entities of F is a global problem and the previous method
employed, i.e., finding distance between all combinations
of geometric entities that form the boundary, is expensive
and less accurate. Therefore here the skeleton is generated
using concepts of medial axis transform (MAT) and
chordal axis transform (CAT).

The MAT is initially defined by Blum [12] for a planar
domain as the locus of the center of the maximal ball as it
rolls inside an object--along with the associated radius
function (see Figure 5(a)). In other words, a point q ∈ F is
contained in medial, MA(F), if and only if there exists a
closed disc K(q, r(q)) with center q and radius r(q), which
is not contained in a larger disc W with K(q, r(q)) ⊂ W ⊂
F. The radius function r(q) provides the local thickness and
is a accurate measure of proximity in in(F). Blum also
gave a grassfire analogy to MA, i.e., MA exists at the
interior where the grassfire propagated from the boundary
meet. Later, Wolter [17] defined the MAT of a closed n-
dimensional topological manifold, F, bordered by a
topological n-1-dimensional manifold, bnd(F), as the subset
of the cut locus Cbnd(F) , which is contained in F, i.e., MA(F)
= C bnd(F) ∩ F. The cut locus Cbnd(F) of a closed set bnd(F)
in the Euclidean space is defined as the closure of the set
containing all points, which have at least two shortest paths
to bnd(F). Wolter et al. [18, 19] extended the MAT on
curved surfaces by finding the shortest path on the surface
using geodesics distance instead of Euclidean distance.
The minimal geodesic distance between two points q1 and
q2, is the minimal length of all curves in F that join q1 and
q2.

Even though the MAT is mathematically well-developed
[20] and is an accurate tool for measuring proximity, it is
computationally expensive to generate the continuous
MAT. As MAT is defined over only continuous domains,
it is generally expensive. Also, on curved surface, finding
geodesic is expensive as it requires solving a system of
differential equations [21].

Prasad defined a new type of skeleton for both continuous
and discrete domain, called chordal axis transform
(CAT)[22]. The CAT of a non-degenerate planar shape is
defined as set of ordered pairs (p,δ), where p and δ are
either the midpoint and half the length, respectively, of a
maximal chord of tangency, or the center and radius,
respectively, of a maximal disc with three maximal chords
of tangency, that form an acute angled triangle. Figure 5(b)
shows the chordal axis (CA), points of a discrete planar
domain that can be generated with less computational cost.
Note that CAT is defined only on planar surface and no
effort has yet been made to define it on curved surfaces.

(a) Proximity (b) Curviness (c) Twist

Invalid linear elements
Invalid linear element

Helix (spatial curve)
Plane curve

(a) Proximity

Invalid Tri elements Invalid Tri elements

(b) Curviness

Figure 5 Medial and Chordal axis

5.2. Skeleton Generation
As FE mesh is a discretization of a continuous domain, in
this paper, a set of sufficiently-accurate disconnected
skeleton points are generated using the concepts of MAT
and CAT, with less computational cost. Figure 6(a)
illustrates a general surface F in 3ℜ . First a discrete
representation of parametric surface F , is obtained by
extracting graphics facets, T. Note that graphics facets are
generated based on the curvature of the surface and may
contain poor quality triangles, as maintaining the
cardinality of T minimum is one of the objectives. A set of
triangles T, is split into planar (Tpln), and curved (Tcrv)
subsets, as illustrated in Figure 6(b). Subset Tpln contains
triangles whose vertices lie only on bnd(F), and the angle
between the normals of the adjacent facets ti, tj ∈ Tpln ,
should be within a predefined limit θpln. The subset Tcrv
=T\Tpln, represents high curvature regions containing many
vertices in in(F). As CAT is defined on the planar domain,
disconnected skeleton points are generated using CAT in
Tpln. And in Tcrv , grassfire is propagated from the
boundary to obtain disconnected skeleton points, using the
concept of MAT. The details of obtaining these skeleton
points in Tpln and Tcrv , are explained in the following
paragraphs.

Figure 6 Disconnected skeleton

Here the disconnected skeleton generated in Tpln , using the
CAT, is explained. Tpln of a surface contains fewer facets
and does not guarantee quality (see Figure 7(a)). To
increase the number of triangles, the triangles are
subdivided by adding Steiner points only on the boundary,
as shown in Figure 7(b). The addition of Steiner points
depends on the number of boundary edges and the internal

angle of the subdivided triangles. As Delaunay mesh is
needed for the generation of CA, triangulation shown in
Figure 7(b) is converted into Delaunay mesh, as seen in
Figure 7(c). Delaunay mesh is generated by removing the
illegal internal edges iteratively, using edge swaps[23]. CA
points exist at the midpoint of the internal edges and at the
circum-center of the acute angle triangles, which have three
internal edges. Centroid is used instead of circum-center to
reduce the computational cost. The radius of CA points is
calculated using half the length of internal edges and
average distance from centroid to three vertices of acute
angle triangle. For the purpose of mesh sizing, only a
subset of skeleton points is considered. As the radius of
skeleton points formed by adjacent curves approaches zero
(see Figure 5(a) and Figure 7(c)) at convex vertices, these
points will generate a fine mesh and hence the skeleton is
trimmed. If the angle between the curve normal measured
at the end vertices of the internal edge connecting the
adjacent curves, is less than a threshold value, then the
skeleton point at the mid-point of the internal edge is not
generated. The size at these regions is determined by other
tools discussed in the rest of this section and interpolation
technique, which is detailed in Section 9.

Figure 7 Skeleton generated in Tpln

The disconnected skeleton generated in Tcrv by propagating
grassfire from the boundary curves is explained here, which
is similar to 3D discrete skeleton generation[24]. Figure 8
(a) shows the initial graph Tcrv, lying on a curved surface F.
To improve the accuracy of skeleton, additional graph
edges and vertices (see Figure 8(b)) are added to Tcrv to
form a dense graph T’crv, as shown in Figure 8(c) and
Figure 17(b). These additional edges are obtained by
joining the centroid of the facets with the three midpoints
of its edges. The accuracy of the skeleton can be improved
by using multiple refinements, at the expense of time. The
grassfire propagation on graph T’crv has three main steps:

Maximal circles
and its center

Maximal chord
of tangency

Medial axis
Mid point

Chordal axis

Internal edges
of Delaunay
mesh

(a) Medial axis (b) Chordal axis

Boundary vertices

(a) Parametric surface (b) Graphics facets and skeleton

F

Tpln

Tcrv

Skeleton using
CAT

Skeleton using
grassfire

Internal vertices

(a) Graphics facets (b) Subdivided graphics facets

Delaunay triangulation

Skeleton points are
not considered at
convex corners

(c) Trimmed disconnected CAT

Skeleton point at the mid
point of internal edges
Skeleton point at the
centroid of acute angle
triangle

(1) The initiation phase, (2) propagation phase, and (3)
termination phase (see Algorithm 1), which are detailed
below.

In the initiation phase, the vertices of T’crv lying on the
boundary curves of F are inserted into a priority queue, H,
to form the initial front for grassfire propagation. The
distance, d, traveled by the wave at the vertices of the
initial front is set to 0.0 and the curve ID is stored. The
inward direction of the wave, w, at each vertex of the initial
front is given by n x t, where n is surface normal and t is
curve tangent. The wave direction, w, lies on the tangent
plane of the surface and is orthogonal to t. In the
propagation phase, the initial front is incrementally moved
inwards by popping the top vertex, vtop, from H and
pushing valid adjacent vertices of vtop into H. At the top
vertex vtop, the distance d traveled by the wave is least. The
valid adjacent vertices of vtop are the ones, which are not
yet visited by the wave and whose insertion into the current
front (H) will move the front inward. As the grassfire
propagates, curve ID, distance, and direction of the wave at
the newly-inserted adjacent vertices vadj are calculated
using vtop (performed in Function VisitNode in Algorithm
1). The distance dadj at vadj is given by dadj = dtop + dist
(vtop, vadj). As the wave touches vadj from different
direction, the dadj is updated by retaining the minimum
value. Thus every node will have minimum distance from
the boundary. The wave direction at the vadj is calculated
by taking the projection of wave direction at vtop on the
tangent plane at vadj. In the termination phase, skeleton
points are generated at the region where the opposing fronts
meet. As previously mentioned, the curve ID and the
direction of the wave at the opposing fronts are used to trim
the skeleton to avoid unnecessary fine mesh at convex
corners. The position, distance and direction of the wave
stored at the vtop, and its opposing adjacent vertex, is used
to determine the position and radius of skeleton points.
The grassfire propagation ends when the number of vertices
in the current front H goes to zero.

Algorithm 1: Grassfire propagation on T’crv
Input: T’crv
Output: Disconnected skeleton points
Begin
 Insert boundary vertices of T’crv into a priority queue H.

 While (|H| ≠ 0)

 vtop ← H.Pop()

 VisitNode (vtop, H)

End

Note that an approximate intrinsic distance, i.e., distance
measured on the surface, is used, rather than Euclidean
distance, in determining the radius of the skeleton points in
both Tpln and Tcrv. Also, since many of the meshing
algorithms use the advancing front method (AFM)[1], the
radius function of the skeleton is naturally an accurate
estimation of proximity. Thus, computationally efficient,
sufficiently accurate skeleton points are generated to
measure the proximity in in(F) for the purpose of mesh
sizing.

Figure 8 Skeleton generated in T’crv

5.3. Measuring Curviness in in(F)
Unlike proximity, measuring curviness is a local problem.
Let us consider a point q = x(u0, v0), on surface F and let
α(t) be a curve passing through q (see Figure 9(a)). α’(t)
denotes the tangent vector of the curve α at t. The tangent
plane of F at q is the set of tangent vectors of all curves
passing through q and is given by

Tq(F) = { v | v is tangent to F at q}.

The curviness of F at q can be measured by measuring the
curvature of curve α(t) at q. Without any loss of
generality, let q = α(t0), w ∈ Tq(F) be equal to α’(t0), and
N be the normal to Tq(F) at q. The curvature vector k of α
at q is given by Equation 6.

 k = kn + kg = kn N + kg G (6)

where G is the unit vector along (N x w) ∈ Tq(F), as shown
in Figure 9. kn is called “the normal curvature vector”,
which is given by Equation 7; and kg is known as “the
geodesic curvature vector”. Their signed lengths, kn, kg are
called normal curvature and geodesic curvature in direction
of α’(t0) respectively. Note that the signs of kn and kg
depend on the orientation of the surface given by the
normal vector, N.

For mesh sizing purposes, we are interested in the deviation
in the direction of the normal while measuring the amount
of curviness, which is clear from Figure 4(b). kn is a
measure of change in α’(t0) in the normal plane, whereas kg
is a measure of change in α’(t0) in the tangent plane. As
the normal curvature kn varies with the direction of α’(t0),
there exist extreme values kmin and kmax (not necessarily
distinct values) [25], called “minimum and maximum
principal curvatures”, along α’min(t0) and α’max(t0),
respectively. Their product K := kmin . kmax is called “the
Gaussian curvature” and their mean H := (kmin + kmax) / 2.0
is called “ the mean curvature”.

(d) Disconnected skeleton (c) Dense graph T’crv

(a) Graphics facets Tcrv (b) Additional graph
vertices and edges

Figure 9 Curvature and mesh size at a point

NNxk

⋅= 2

2

dt
d

n
 (7)

For the purpose of mesh sizing, it is necessary to evaluate
the curvature at just a few sample points where the surface
bends, at less computational cost. Mclvor et al. [26]
compared eight different methods of estimating surface
curvature. The facet-based method proves efficient for
calculating a relatively accurate curvature estimate with
less computational time. Sample points are placed where
the direction of the facet’s normal change in order to
capture surface curvature (see Figure 10). As internal facet
vertices exist to capture the curvature, sample points are
placed on every internal facet vertices, as shown on the left
in Figure 10. If the adjacent facets of an internal edge are
not coplanar, then sample points are placed at midpoint of
the internal edge and at centroid of adjacent facets, as
shown on the right in Figure 10.

Figure 10 Sample points on graphics facets

5.4. Measuring Proximity in in(C)
On a curve, the midpoint acts as a skeleton point, and half
the length of the curve is used to measure proximity
between the end points. The length of curve α(t) between
the end vertices α(a) and α(b) is given by Equation 8.

∫=
b

a

dttL)()('αα (8)

As before, in order to reduce the computational cost, the
length is calculated by adding the length of facet edges
connecting the two end points of the curve α(t).

5.5. Measuring Curviness in in(C)

For a curve α(t) whose tangent vector is given by α’(t),
curvature vector k is given by Equation 9. Curvature k
measures the variation in the direction of the tangent
vector. Sample points are placed on the curve at the facet
vertices only if the adjacent facet edges are not collinear.
The approximate curvature can be estimated by using the
normal of adjacent edges to reduce the computational cost.

3'

'''

α

αα ×
=k (9)

5.6. Measuring Twist in in(C)

Torsion is used to measure the twist of the curve α(t) and is
given in Equation 10.

()
2'''

''''''

αα

ααατ
×

⋅×
= (10)

6. COMPUTATIONAL PROCEDURE FOR
GENERATING FE MESH SIZING

The computational procedure for generating the mesh
sizing function has three main steps: (1) generation of
source points, (2) generation of a lattice for storing the
sizing function, and (3) interpolation of mesh size on the
lattice using source points. These three steps are discussed
in the following paragraphs. The input is a set of connected
surfaces. The boundary of the industrial mechanical parts
is one example of the input (see Figure 16 and Figure 17).
Here, the input surface to be represented is considered in B-
rep format (such as the ACIS sat file), as it is supported by
many commercial geometric modelers.

Although only geometric factors are considered in
generating the sizing function here, the computational
procedure proposed is sufficiently flexible to consider non-
geometric factors, such as physics, boundary condition etc.
The tools used to measure the geometric complexity of the
input surface introduce different types of source points on
the surface (see Figure 16(b) to Figure 16(d), more details
in Section 7).

To store the mesh sizing function, a specific type of
hierarchical background grid called PR-Octree (PR:Point
Region) [27], is proposed (detailed in Section 8). In the
literature, 2D background mesh [7] and 2D background
grid [11] in parametric space were used to store mesh size.
This approach depends significantly on the
parameterization used. It is also expensive to find the
triangle containing the point, where mesh size must be
evaluated. Therefore a hierarchical background grid is
generated here in 3D space, avoiding problems related to
parameterization and reducing the meshing time.

α’(t0)

kn

kg

k

α(t)
α’max(t0)

Linear element

Rmin

θ

h

Tq(F)

Normal plane

(a) normal and geodesic curvature (b) mesh size

N
G

Internal point Midpoint Centroid

n

n

The next step is to interpolate the sizing function over the
PR-Octree lattice using the source points. A good
interpolation scheme should provide flexibility in
controlling mesh size and gradation [28, 29]; and it should
generate smooth sizing function by satisfying α-Lipschitz
condition. A good interpolation scheme should be
computationally efficient, and thus able to generate variety
of meshes as per user requirements. The details of the
proposed interpolation scheme, which meet the above
requirements, are explained in Section 9.

This computational procedure is independent of the
meshing algorithm used and during mesh generation, the
target mesh size at a point is interpolated using the size
stored at the lattice-nodes of the octree cell containing that
point.

7. GENERATION OF SOURCE POINTS

“The source point” is an abstract term which represents size
and gradient at a location due to any of the factors, such as
geometric, physics, loading, user defined, etc. Figure 11
shows a source point that is defined by: size, s; center,
c[x,y,z]; scope, scp; and local sizing function , f. The size
at the center c is denoted by s, and the sizing gradient
around the center, inside the scope scp, is controlled by the
local-sizing function f. By controlling the size, scope, and
local sizing function, a variety of meshes can be generated
to meet the user requirement.

Figure 11 General and skeleton-based source

points

Here, source points are generated using the tools (see
Section 5) that measure geometric complexity of a surface.
The disconnected skeleton is used to generate the skeleton-
based source points. The size, center, scope, and local
sizing function f , of the skeleton-based source points are
determined as given in Figure 11. A linear local sizing
function has been used. The end_factor controls the size at
the periphery of the source points. By default, end_factor
is set to 0.1, thus the size decreases with the distance away
from the center. This will generate slightly smaller
elements at the boundary; the intention being that FE mesh
will better represent the geometric model at the boundary.

The surface-curvature-based source points are generated
only at the sample points where the curvature is estimated
(see Section 5.3). At a sample point q , the element size ‘h’
is calculated as given in Equation 11 [30], (see Figure
9(b)), where θ is the maximum spanning angle and
minimum radius of curvature (Rmin = 1/ kmax) as seen in

Figure 9(b). For a constant curvature, the deviation of the
linear FE from the surface will be Rmin - Rmin . cos(θ/2).
Mesh size h, shown in Figure 9(b), is a conservative
estimate, as kmax is used in estimating the radius of
curvature. Instead of kmax, mean curvature H can be used,
which will result in coarser mesh size. Researchers have
also used the combination of G and H [31]. The scope of
the source points can be used to control the influence of
curvature.

⋅⋅=

2
sin2 min

θRh (11)

The size of the curve-length-based source points is
determined using half the length of the curve; the points are
placed along the length of the curve at equal intervals. Like
surface-curvature-based source points, curve-curvature-
based source points are added on the curves at the facet
vertices only if the adjacent facet edges are not collinear.

Note that, size of all the above mentioned source points are
truncated to dmin and dmax, if the size is outside the user
specified limits dmin and dmax (see Section 3).

8. PR-OCTREE LATTICE GENERATION

PR-Octree is selected over other types of octree [27] for
storing, because it provides a suitable lattice for storing the
mesh sizing function. PR-Octree [27, 29] is one of the
hierarchical data structures used for special decomposition
which represents a set of input points. By definition, the
PR-Octree contains cells (cubes) which are either empty, or
which contain only one point. The shape of the PR-Octree
is independent of the order in which the input points are
inserted. One disadvantage of the PR-Octree is that
maximum depth depends on the minimum distance
between any two points; therefore maximum depth
(max_depth) of the PR-Octree is fixed here and is taken as
a user input. The max_depth can be increased if input
models contain fine features and high curvature regions.

In Figure 12 PR-Octree generation is explained using a
quadtree for clarity. The vertices and centroid of the
graphics facets of the input surfaces are given as the input
points. The graphics facets capture the surface and curve,
curvature and small features. Small-sized facets exist at the
high curvature region and at fine features (see Figure 16(a)
and Figure 17(a)). Therefore the density of facet points
will be higher at high curvature regions and at small
features (see left-side image in Figure 12); thus small-sized
octree cells are generated in these regions (see right side
quadtree in Figure 12 and octree in Figure 16(e)).

Even though the PR-Octree captures fine features and
surface curvature, it is not directly suitable for storing
sizing function, because of the presence of larger cells in
the interior (see left-side quadtree in Figure 12). The cells
are further subdivided until only 1-level of depth difference
is maintained between the adjacent cells; this ensures
smooth transition in cell dimension (see the right-side
quadtree in Figure 12). The octree lattice can be further
subdivided, based on the source points, to adapt the lattice
based on mesh sizing. Thus a suitable lattice for storing
sizing function is generated.

General source point Skeleton-based source point

s = Radius of skeleton point
c = Position of skeleton point
scp = Radius of skeleton point

()r
(r) - _f s s end factor

scp
= × ×

Figure 12 Original and Subdivided PR-Quadtree

9. INTERPOLATION USING SOURCE
POINTS

In this section, the details of interpolating mesh size on the
PR-Octree using the source points are described. The
lattice-nodes of the octree cells that intersect with the
graphics facets are marked as bnd-lattice-nodes. To limit
the influence of a source point inside its scope, each source
point is linked with the bnd-lattice-nodes that fall inside the
scope of the source point. At first, the mesh size due to
each type of source point is individually calculated at each
bnd-lattice-node, by not merging with other source points,
in order to preserve the characteristics, and to provide
weights to each type source points. Later, the combined
size at each bnd-lattice-node is calculated by taking the
minimum of all the individual sizing functions, as shown in
Figure 14. To ensure smooth gradient, i.e., to satisfy the α-
Lipschitz condition, smoothing techniques are applied using
digital filters. The following paragraphs explain this
process in detail.

Size at a bnd-lattice-node ‘n’, is interpolated by a particular
type of source points, rather than by considering all types
of source points at once. The size at n is interpolated by
taking the weighted sum of the sizes determined by the
local sizing function f of m source points of type k, linked
to that lattice-node, as given in Equation 12 (see Figure 13).
The weight at every source point is calculated by averaging
the normalized weights, determined by the inverse square
distance and inverse square size. This ensures that a source
point which is nearer and has smaller size, has greater
influence at a lattice-node

∑
=

=

 +
×=

mi

1i

i_sizei_dist
iik 2

WW
)d(s f

(12)

where
∑
=

=

= mj

1j
2

j

2
i

i_dist

d
1

d
1

W

,
∑
=

=

=
mj

1j
2

jj

2
ii

i_size

)d(
1
)d(

1

W

f

f

and di is the distance between the center of ith source point
of type k and the lattice-node (n). k could be any type of

source point discussed in Section 7. And fi(di) is the size
determined by the local sizing function of the ith source
point.

The final size ‘s’ at each bnd-lattice-node is calculated as
given in Equation 13, where ‘i’ represents different types of
source points. w are the weights, and all weights are
initially set to 1.0. Figure 14 shows the graphic view of
Equation 13.

{ }{ }{ }minmax ,,aleoverall_scminminmax ddwss ii ⋅⋅=

(13)

Note that individual sizing functions may not cover all the
bnd-lattice-nodes, as some of these bnd-lattice-nodes may
not be linked with any of the source points. The sizes at
these bnd-lattice-nodes are calculated by averaging the
non-zero size of adjacent bnd-lattice-nodes.

Figure 13 Interpolation at a lattice-node

Figure 14 Minimum of all sizing functions

Smoothing techniques are used to alleviate the abrupt
gradients caused by taking the minimum of all the
individual sizing functions (see Figure 14). In the meshing
literature, various smoothing techniques have been used as
post-meshing techniques to smooth the FE meshes. Here
smoothing is done before the meshing process, and thus a
vector (position vector of the mesh nodes), is replaced by a
scalar (mesh size). The concepts of digital filters, used in
the image processing and pattern recognition in removing
the noise, smoothing, and extraction of features, is used
here in smoothing the mesh sizing function stored on the
octree lattice. First the median filter is used to remove the
outliers, then mean filters are used iteratively to smooth the
gradients. By default, the number of iterations of mean
filtering is set to two. While smoothing using mean filter,
an additional constraint is used: if the average of the non-
zero sizes of the adjacent lattice-nodes of a lattice-node n is
more than the size at n, then the size at n is not altered, in

+

bnd-lattice-node n

m number of source points of same type

Lattice-node

M
es

h
Si

ze

dmin

dmax

Minimum size

Abrupt gradient

Facet vertices Lattice-node, n

High curvature region Small feature Larger cells

 Cell Input surface

order to respect the smaller size. This process is repeated
iteratively until α-Lipschitz criterion is satisfied.

To find size at a point p on the surface F, during mesh
generation, octree is first traversed from the root until the
cell cp , containing p, is found; then tri-linear interpolation
is used to calculate the target mesh size at p, using lattice-
nodes of cp. Therefore the target mesh size is calculated in
O(max_depth).

10. RESULTS AND DISCUSSION

The proposed approach has been implemented in C++ in
CUBIT, the mesh-generator software of Sandia National
Laboratories. The algorithm has been tested on many
industrial models and results obtained on a few of these are
shown in Figure 15 to Figure 17 (model courtesy of Ansys,
Inc). The mesh sizing command takes the arguments,
min_depth (int=4), max_depth (int=7), overall_scale (0.0 to
1.0 = 0.75), and interpolation_scheme (0 to 5=2). The
numbers inside the parenthesis show the default values.
From Table 1 is clear that total time of mesh sizing
function generation (excluding meshing time) in Part 2 and
Part 3--which contain 2154 and 3972 tris respectively-- is
reasonable. The timings are measured in hp pavilion
ze5155 notebook.

The disconnected skeleton generated using the proposed
approach is computationally less expensive and accurate
enough for mesh sizing purposes. Figure 16(b) and Figure
17(c) show the disconnected skeleton of Part 2 and Part 3.
Table 2 shows that the skeleton is generated in a reasonable
time of around 3 sec in both Part 2 and Part 3.

The overall_scale is used to control the coarseness level of
the mesh. The overall_scale takes the value between 0.1 to
1.0; and overall_scale = 0.1 generates the finest mesh and
overall_scale = 1.0 generates the coarsest mesh. Figure 15
shows the meshes generated with different values of
overall_scale, but with the same bound values dmax and dmin.

By default, the interpolation_scheme is given by Equation
12 and by controlling the weights (see Equation 13),
various types of meshes can be generated. A higher weight
will increase the corresponding sizing function (see Figure
14). Figure 17 shows the meshes generated by changing
the weight of curvature-based-source points.

Table 1 Computational time (sec) for generating
mesh sizing function

Table 2 Computational time for source point
generation

11. CONCLUSION

In this paper, a computational procedure for FE mesh sizing
function generation is proposed by systematically analyzing
the geometric complexity of a set of surfaces. The tools
that are sufficient to completely measure the complexity of
surfaces are identified, and a reasonably accurate
disconnected skeleton is generated using a new
computationally-efficient algorithm for measuring
proximity. The computational procedure uses PR-Octree
lattice because it reduces the computational cost during
meshing and the interpolation scheme is capable of
generating a variety of meshes by controlling mesh size and
gradation.

REFERENCES

[1] S. J. Owen, "A Survey of Unstructured Mesh
Generation Technology," Proceedings of 7th
International Meshing Roundtable, 1998.

[2] R. Lohner and P. Parikh, "Generation of Three-
Dimensional Unstructured Grids by the
Advancing Front Method," AIAA-88-0515, 1988.

[3] L. P. Chew, "Constrained Delaunay
Triangulations," Algorithmica, vol. 4, pp. 97-108,
1989.

[4] L. P. Chew, "Guaranteed-quality triangular
meshes," Tech. Report TR-89-983, Cornell
University, 1989.

[5] H. Chen and J. Bishop, "Delaunay Triangulation
for Curved Surfaces," 6th International meshing
roundtable, 1997.

[6] A. Cunha, S. A. Canann, and S. Saigal,
"Automatic Boundary Sizing For 2D and 3D
Meshes," AMD Trends in Unstructured Mesh
Generation, ASME, vol. 220, pp. 65-72, 1997.

[7] S. J. Owen and S. Saigal, "Neighborhood Based
Element Sizing Control for Finite Element
Surface Meshing," Proceedings, 6th
International Meshing Roundtable, pp. 143-154,
1997.

[8] S. Pirzadeh, "Structured Background Grids for
Generation of Unstructured Grids by Advancing-
Front Method," AIAA, vol. 31, 1993.

No. of source points /Time(sec)

Source point type

Part 2 Part 3

Skeleton 5,377 / 3.01 4,053 / 3.17

Surface Curvature 3,723 / 0.64 1,462 / 0.13

Curve Curvature 287 / 0.15 492 / 0.10

Curve Length 492 / 0.01 318 / 0.01

 Part 2 Part 3

Octree Generation 8.31 14.70

Source Point Generatioin 5.84 3.51

Interpolation 4.57 2.29

Total 18.72 20.50

[9] M. A. Yerry and M. S. Shepard, "A Modified-
Quadtree Approach to Finite Element Mesh
Generation," IEEE Computer Graphics
Applications, vol. 3, pp. 39-46, 1983.

[10] W. C. Tracker, "A Brief Review of Techniques
for Generating Irregular Computational Grids,"
Int. Journal for Numerical Methods in
Engineering, vol. 15, pp. 1335-1341, 1980.

[11] M. S. Shephard, "Approaches to the Automatic
Generation and Control of Finite Element
Meshes," Applied Mechanics Review, vol. 41, pp.
169-185, 1988.

[12] H. Blum, "A Transformation for Extracting New
Descriptors of Shape," Models for the Perception
of Speech and Visual Form Cambridge MA The
MIT Press, pp. 326-380, 1967.

[13] V. Srinivasan, L. R. Nackman, J. M. Tang, and S.
N. Meshkat, "Automatic Mesh Generation using
the Symmetric Axis Transformation of Polygonal
Domains," Proc. IEEE, vol. 80(9), pp. 1485-
1501, 1992.

[14] H. N. Gursoy, "Shape Interrogation by Medial
Axis Transform for Automatd Analysis," MIT
Ph.D. Thesis, 1989.

[15] H. N. Gursoy and N. M. Patrikalakis, "An
Automatic Coarse And Fine Surface Mesh
Generation Scheme Based on MAT Part I:
Algorithms," Engineering With Computers, vol.
8, pp. 121-137, 1992.

[16] W. R. Quadros, K. Ramaswami, F. B. Prinz, and
B. Gurumoorthy, "Automated Geometry
Adaptive Quadrilateral Mesh Generation using
MAT," Proceedings of ASME DETC, 2001.

[17] F.-E. Wolter, "Cut Locus and Medial Axis in
Global Shape Interrogation and Representation,"
Tech. Report, MIT Ocean Engineering Design
Laboratory, revised version, 1993.

[18] T. Rausch, F.-E. Wolter, and O. Sniehotta,
"Computation of Medial Curves on Surfaces,"
Welfen Laboratory Report No. 1, 1996.

[19] F.-E. Wolter, "Local and Global Geometric
Methods for Analysis Interrogation,
Reconstruction, Modification and Design of

Shape," Computer Graphics International, pp.
137, 2000.

[20] E. C. Sherbrooke, N. M. Patrikalakis, and F.-E.
Wolter, "Differential and Topological Properties
of Medial Axis Transforms," Graphical Models
and Image Processing, vol. 58, pp. 574-592,
1996.

[21] M. D. Carmo, "Differential Geometry of Curves
and Surfaces," Prentice-Hall, Inc., Englewood,
Cliffs, New Jersey, 1976.

[22] L. Prasad, "Morphological Analysis of Shapes,"
http://cnls.lanl.gov/Highlights/1997-07/, 1997.

[23] M. d. Berg, M. v. Kreveld, M. Overmars, and O.
Schwarzkopf, "Computational Geometry:
algorithms and applications," Springer, 1997.

[24] W. R. Quadros, K. Shimada, and S. J. Owen, "3D
Discrete Skeleton Generation by Wave
Propagation on PR-Octree for Finite Element
Mesh Sizing," ACM Symposium on Solid
Modeling and Applications, 2004.

[25] J. Oprea, "Differential Geometry and its
Applications," Prentice-Hall, Inc., Upper Saddle
River, New Jersey, 1997.

[26] A. Mclvor and R. Valkernburg, "A comparison of
local geometry estimation methods," Machine
Vision and Application, vol. 10, pp. 17-26, 1997.

[27] H. Samet, "Spatial Data Structures," in Modern
Database Systems: The Object Model,
Interoperability, and Beyond, W. Kim Ed.
Addison-Wesley/ACM Press, pp. 361-385, 1995.

[28] H. Borouchaki and F. Hecht, "Mesh Gradation
Control," 6th International meshing roundtable,
1997.

[29] P. J. Frey and P.-L. George, Mesh Generation:
Application to Finite Elements, 1 ed: Hermes
Science Publications, 2000.

[30] S. J. Owen and S. Saigal, "Surface Mesh Sizing
Control," International Journal for Numerical
Methods in Engineering, vol. 47, pp. 497-511,
2000.

[31] N. Dyn, K. Hormann, S. J. Kim, and D. Levin,
"Optimizing 3D Triangulations using discrete
curvature analysis," Innovations in Applied
Mathematics, Vanderbilt University Press, 2001.

(a) overall_scale = 0.5, number of tris = 48,354 (b) overall_scale = 0.9, number of tris = 12,940

Figure 15 Effect of overall_scale on mesh size in Part 1

(a) Graphics facets (b) Trimmed disconnected skeleton (c) Surface curvature

(d) Curve curvature and length (e) Interpolation on PR-octree lattice (f) Geometry-adaptive mesh (2,154 tris)

Figure 16 Stages of mesh sizing function generation in Part 2

(a) Graphics facets (b) Subdivided facets (dense graph) (c) Trimmed disconnected skeleton

(d) curvature weight = 2.0 (e) curvature weight = 1.0 (f) curvature weight = 0.5

Figure 17 Effect of weight of curvature on mesh size in Part 3

